API| Documentation - SvanLINK v1.1.7

Contents

Get Started

Authentication

General Error Handling

WebSocket Configuration

Securing the connection

MQTT Configuration

Code examples

login - Login into SvanLINK

logout - Logout

setNewPassword - change access password
licenseStatus - get license status
setLicense - activate new licence key
getStatus - Get device statuses

getResults - Get measurement results
getSpectrumResults - Get spectrum results
startMeasurement - Start measurements
stopMeasurement - Stop measurements
getConfig - Get configuration

setConfig - Set configuration

getSetup - Get setup from connected device

setSetup - Upload setup to connected device

copySetup - Copy setup from device to device(s)

sendRawCommand - Send # type command

Version: 1.1.7

API| Documentation - SvanLINK v1.1.7

getFileList - Get file list from devices
downloadFile - Download single file from device
downloadFileList - Download multiple files from devices
deleteFile - delete file from device

getVersion - get current app version
checkUpdate - check for updates
downloadUpdate - download updates
installUpdate - install updates

MQTT requests:

setMqttConfig - Set MQTT broker configuration
getMqttConfig - Get MQTT broker configuration
addMaqttTopic - Add MQTT topic
deleteMqttTopic - Delete MQTT topic
getMqttTopicList - Get list of MQTT topics
WebSocket only requests:

subscribeChannel - subscribe to channel
getChannelList - get list of channels

deleteChannel - delete channel

API| Documentation - SvanLINK v1.1.7

Get Started

To get started with the SvanLINK application, follow these steps:
Linux

1. Download the zip file containing the application.
2. Unpack the zip file:

I unzip svanlink_os_osType.zip

3. Navigate to the unpacked directory:

cd svanlink

4. Make the binaries executable:

chmod +x svanlink
chmod +x restart

5. Run the application:

sudo ./svanlink

Windows
Run the installation file and follow the instructions.

The API requests by default are sent to local address on TCP port 8000 .

In browser under the local address on port 8o (default http port) should be available Ul of the
app. For example: http://localhost

Mac OS
Run the installation file and follow the instructions.

The API requests by default are sent to local address on TCP port 8000 .

API| Documentation - SvanLINK v1.1.7

In browser under the local address on port 3000 (default http port) should be available Ul of the
app. For example: http://localhost:3000

API| Documentation - SvanLINK v1.1.7

Authentication
Overview

SvanLINK API uses token-based authentication to secure access to all endpoints.
Authentication is required for all API requests except for the initial login request.

Authentication Flow

1. Login: Send a login request with your password to obtain an authentication token.

2. Token Usage: Include the token in all subsequent API requests using the token
parameter.

3. Logout: Use the logout request to invalidate the token when you're done.

Token Lifecycle

Creation: Tokens are generated upon successful login and are cryptographically secure.
Usage: Tokens must be included in the request body of all authenticated endpoints.

Expiration: Tokens remain valid until explicitly logged out or the SvanLINK application is
restarted.

Invalidation: Tokens can be invalidated by calling the logout endpoint or by restarting the
SvanLINK application.

Security Considerations

Token Storage: Store tokens securely and never expose them in client-side code or logs.

HTTPS/WSS: Use secure connections (HTTPS for HTTP API, WSS for WebSocket) when
transmitting tokens over the network.

Token Rotation: Regularly log out and re-authenticate to obtain new tokens.

Network Security: Ensure your network is secure, especially when using the default localhost
configuration.

Password Security: Use strong passwords and change the default password using the
setNewPassword endpoint.

Error Handling

When authentication fails, the API will return an error response:

API| Documentation - SvanLINK v1.1.7

{
"Request": "endpointName",
"Status": "error",
"StatusMessage": "Invalid token"
¥

WebSocket Authentication

For WebSocket connections, authentication can be performed in two ways:

1. Login Request: Send a login request as the first message after establishing the
WebSocket connection.

2. Token Only: Send just the token string (without wrapping it in a request object) if you
already have a valid token.

Example Authentication Flow

// 1. Login to obtain token
{
"Request": "login",
"Params": {
"password": "your_password"

b
b

// 2. Use token in subsequent requests
{

"Request": 'getStatus",

"token": "your_token_here"

b

// 3. Logout when done

{
"Request": "logout",
"token": "your_token_here"

b

API| Documentation - SvanLINK v1.1.7

General Error Handling
Overview

All SvanLINK API endpoints follow a consistent error response format. Understanding these
error patterns will help you handle errors gracefully in your applications.

Standard Error Response Format

When an error occurs, the API returns a JSON response with the following structure:

{

"Request": "endpointName",

"Status": "error",

"StatusMessage": "Description of the error"
I

Error Response Fields

Request : Reflects back the original request type that caused the error.
Status : Always setto "error" for failed requests.

StatusMessage : A human-readable description of what went wrong.

Common Error Types

Authentication Errors: Invalid or missing tokens, wrong passwords

Parameter Errors: Missing required parameters, invalid parameter formats

Device Errors: Device not found, device not connected, device communication issues
File Errors: File not found, file access denied, file format issues

System Errors: Internal server errors, unhandled exceptions

General Error Example

For unhandled or unexpected errors, the API returns a generic error message:

{

"Request": "endpointName",

"Status": "error",

"StatusMessage": "An unhandled error occurred during execution. Please try again!"
b

API| Documentation - SvanLINK v1.1.7

Error Handling Best Practices
Always check the Status field: Verify if the request was successful before processing the
response.

Handle specific errors: Check the StatusMessage for specific error conditions and handle
them appropriately.

Implement retry logic: For transient errors, implement exponential backoff retry mechanisms.
Log error details: Log both the Request and StatusMessage for debugging purposes.

User-friendly messages: Translate technical error messages into user-friendly notifications.

HTTP Status Codes

In addition to the JSON error response, the APl may also return appropriate HTTP status codes:

200 OK: Request successful (even if Status is "error" in JSON)
400 Bad Request: Invalid request format or parameters

401 Unauthorized: Authentication required or invalid credentials
403 Forbidden: Valid authentication but insufficient permissions
404 Not Found: Endpoint or resource not found

500 Internal Server Error: Server-side error

WebSocket Configuration
Description:

This configuration is used to set up WebSocket communication. The configuration specifies the
intervals at which different types of data are sent automatically. The settings are saved, and on
reconnection, SvanLINK will continue to send results according to the configured intervals. The

maximum number of simultaneous connections is 20 clients.
The configuration must be sent via WebSocket connection. Default port is soo1

From version 1.1.0 was introduced such a concept as channels. Channel represents under a
name a request (or set of requests) which will be preconfigured and sent automatically
according to configured intervals. This allows to listen to different sets of requests by different
clients.

API| Documentation - SvanLINK v1.1.7

Authentication:

When the WebSocket connection is opened, the first step is to authenticate. This can be done
by sending a login request or by sending only the token (as a string) which was generated
previously.

Request Format:
Request Body:
To configure the broadcast of data the SvanLINK will accept a list of "Requests". Each item in

the list contains a desired type of request (the requests are described below in the
documentation) and an interval (ms) at which the data must be sent.

{
"Channel": "main", //Optional, default is "main"
"Requests'": [
{
"Request": ''getResults",
"Interval”: 1000 // Interval in milliseconds (ms). Minimum interval is 100@ms.
b
{
"Request": '"getSpectrumResults",
"Interval”: 5000 // Interval in milliseconds (ms). Minimum interval is 10@ms.
}
]
¥

Channel : The name of the channel. Default is "main" .
Requests : An array of request objects.

Request : The type of data request. Currently available requests are:
getFileList - Get list of files

getResults - Get measurement results
getSpectrumResults - Get spectrum results
getStatus - Get device statuses

getVersion - Get version information
licenseStatus - Get license status
sendrRawCommand - Send raw command to device

startMeasurement - Start measurement

API| Documentation - SvanLINK v1.1.7

Interval : The interval in milliseconds (ms) at which the data is sent. Minimum interval is
100ms.

Success Response:

The response indicates that the configuration has been successfully applied, and data will be
sent automatically according to the configured intervals.

Response Format:

{
"Channel": "main",
"Status": "ok",
"Response": {
"message": "Configuration applied successfully"
¥
¥

message : A message indicating that the configuration has been successfully applied.

Channel Management Workflow:

1. Use getChannelList to see all available channels

2. Use subscribeChannel to subscribe to a channel

3. Use deleteChannel to remove unwanted channels

4. Recreate channels by sending WebSocket configuration messages

Securing the connection (optional)
Description:

To secure the connection between the client and the SvanLINK application, you can configure
SSL certificates. This will enable encrypted communication, ensuring that data transmitted
between the client and the server is secure.

Configuration Steps:

1. Obtain SSL certificates:
You need two files: cert.pem (the certificate) and key.pem (the private key).

2. Place the certificate and key files in the certificates folder within the SvanLINK
application directory:

10

API| Documentation - SvanLINK v1.1.7

mv path/to/cert.pem certificates/
mv path/to/key.pem certificates/

3. On startup, SvanLINK will automatically detect the presence of these files and switch on

encryption for communication.

Verification:

Once the certificates are in place, restart the SvanLINK application. You should see a log
message indicating that the WebSocket server is starting with SSL.:

"Starting UI with SSL" or
"Starting TCP server with SSL" or
"Starting WebSocket server with SSL"

If the certificates are not found, the WebSocket server will start without SSL:

"Starting UI without SSL" or
"Starting TCP server without SSL" or
"Starting WebSocket server without SSL"

11

API| Documentation - SvanLINK v1.1.7

MQTT Configuration
Description:

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol designed
for 10T (Internet of Things) applications. SvanLINK supports MQTT to enable automatic
publishing of measurement data, device status, and other information to an MQTT broker,
allowing integration with external systems, dashboards, and data processing platforms.

How MQTT Works in SvanLINK:

SvanLINK acts as an MQTT client that connects to an MQTT broker. Once configured,
SvanLINK can automatically publish data to the broker at specified intervals. The system uses a
topic-based configuration similar to WebSocket channels, where each topic represents a set of
requests that are published periodically.

Key Concepts:

MQTT Broker: The server that receives and distributes messages. You need to configure the
broker host, port, and authentication credentials.

Topics: Named channels where data is published. Each topic can have multiple request types
configured with different intervals.

Automatic Publishing: Once configured, SvanLINK automatically publishes data according to
the configured intervals without requiring individual API requests.

Persistent Configuration: MQTT topics and broker settings are saved and persist across
application restarts.

Configuration Workflow:

1. Configure MQTT Broker: Use setMqttConfig to set up the broker connection (host, port,
username, password, SSL certificate if needed).

2. Verify Configuration: Use getMqttConfig to retrieve and verify the current broker settings.

3. Create Topics: Use addMqttTopic to configure which data requests should be published
and at what intervals.

4. Manage Topics: Use getMqttTopicList to view all configured topics, and deleteMqttTopic
to remove unwanted topics.

12

API| Documentation - SvanLINK v1.1.7

Available MQTT API Requests:

The following API endpoints are available for configuring and managing MQTT functionality:

setMqttConfig - Configure the MQTT broker connection settings (host, port, credentials, SSL
certificate).

getMqttConfig - Retrieve the current MQTT broker configuration.
addMaqttTopic - Create or update an MQTT topic with specified requests and intervals.
deleteMqttTopic - Delete a specific MQTT topic and stop its automatic publishing.

getMqttTopicList - Get a list of all configured MQTT topics and their configurations.

Supported Request Types:

The following request types can be configured for automatic MQTT publishing:

getFileList - Get list of files

getResults - Get measurement results
getSpectrumResults - Get spectrum results
getStatus - Get device statuses

getVersion - Get version information
licenseStatus - Get license status
sendRawCommand - Send raw command to device

startMeasurement - Start measurement

Message Format:

When data is published to the MQTT broker, each message includes:

Topic Name: The configured topic name (e.g., "main", "deviceStatus")
Timestamp: A timestamp in the format "vyyY-MM-DDTHH:mm:ss.555"

Data: The response data from the configured request, formatted as JSON

Security Considerations:

Authentication: MQTT broker credentials (username and password) are stored securely in a
separate file.

13

API| Documentation - SvanLINK v1.1.7

SSL/TLS: You can configure SSL certificates for secure encrypted connections to the MQTT
broker.

Network Security: Ensure your MQTT broker is properly secured and accessible only to
authorized clients.

Notes:

The minimum interval for publishing requests is 100 milliseconds (ms).

MQTT topics work similarly to WebSocket channels, allowing multiple clients to subscribe to the
same data streams.

If the MQTT broker connection is lost, SvanLINK will attempt to reconnect automatically.

14

API| Documentation - SvanLINK v1.1.7

Code Examples

// JavaScript
async function makeRequest() {
try {
// Create the pavload
const payload = {
Request: 'getResults",
Params: {
results: ["LAeq", "LCeq"l,
devices: [123456, 654235],
average: '"true"
}.
token: "userToken"
¥

// Send the POST request
const response = await fetch('http://localhost:8000/', {
method: 'POST',

headers: { 'Content-Tvype': 'application/json' },
body: JSON.stringify(payload)
});

// Check if response is 0K
if (!response.ok) {
throw new Error(HTTP error! Status: ${response.status}’);

}

// Parse and print the JSON response

const data = await response.ison();

console.log(JSON.stringify(data, null, 2));
} catch (error) {

console.error('Error:', error.message);

b
b

// Execute the request
makeRequest();

15

API| Documentation - SvanLINK v1.1.7

Python
import requests
import json

def make_request():
try:
Create the payload
pavload = {
"Request": ''getResults",
"Params": {
"results": ["LAeg", "LCeq"],
"devices": [123456, 654235],
"average'": "true"
}I
"token": "userToken"

}

Send the POST request
url = "http://localhost:8000/"
response = requests.post(url, json=payload)

Check if response is OK
response.raise_for_status()

Parse and print the JSON response
print(json.dumps(response.json(), indent=2))
except requests.exceptions.RequestException as e:

print(f"Error: {e}")

Execute the request
make_request()

cURL
curl —X POST http://localhost:8000/ \
-H "Content-Type: application/json" \
-d '{
"Request": '"getResults",
"Params": {
"results": ["LAeq", "LCeq"l],
"devices": [123456, 654235],
"average'": "true"
+
"token": "userToken"

} 1

16

API| Documentation - SvanLINK v1.1.7

//Java

import java.net.URI;

import java.net.http.HttpClient;
import java.net.http.HttpRequest;
import java.net.http.HttpResponse;
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import com.google.gson.JsonArray;

public class HttpPostExample {
public static void main(String[] args) {
try {
// Create the JSON pavload
JsonObject payload = new JsonObject();
payload.addProperty("Request", "getResults");

JsonObject params = new JsonObject();
JsonArray results = new JsonArray();
results.add("LAeq");
results.add("LCeqg");
params.add('"results", results);
JsonArray devices = new JsonArray();
devices.add(123456);
devices.add(654235);
params.add('devices", devices);

params.addPropertv("average", "true");
payload.add("Params", params);
payload.addProperty("token", "userToken");

// Convert pavload to string
Gson gson = new Gson();
String jsonPayload = gson.toJson(payload);

// Create HTTP client
HttpClient client = HttpClient.newHttpClient();

// Build the HTTP request

HttpRequest request = HttpRequest.newBuilder()
.uri(URI.create("http://localhost:8000/"))
.header("Content-Type", "application/ison")
.POST (HttpRequest.BodyPublishers.ofString(jsonPayload))
.build();

// Send the request and get the response
HttpResponse response = client.send(request,
HttpResponse.BodyHandlers.ofString());

// Parse and print the JSON response
JsonObject responseJson = gson.fromJson(response.body(), JsonObject.class);
System.out.println(gson.toJson(responselson));

} catch (Exception e) {
e.printStackTrace();
¥
¥
b

17

API| Documentation - SvanLINK v1.1.7

// Go

package main

import (
"bytes"
"encoding/json"
"fmt"
"net/http"

)

func main() {
// Define the payload structure
type Params struct {
Results [Istring “json:"results"®
Devices [lint ‘ison:"devices"’
Average string " json:"average"’

b

type Payload struct {
Request string " json:"Request"®
Params Params ~json:"Params"®
Token string “json:"token"®

by

// Create the payload
payload := Payload{
Request: "getResults",
Params: Params{
Results: [lstring{"LAeqg", "LCeq"},
Devices: [1int{123456, 654235},

Average: ‘'true",
T,
Token: "userToken",
}
// Marshal the payload to JSON
isonData, err := json.Marshal(payload)
if err !'= nil {
fmt.Println("Error marshaling JSON:", err)
return
}
// Create the HTTP request
url := "http://localhost:8000/"
req, err := http.NewRequest("POST", url, bytes.NewBuffer(jsonData))
if err = nil {
fmt.Println("Error creating request:", err)
return
}

req.Header.Set("Content-Type", "application/json")

// Send the request
client := &http.Client{}

resp, err := client.Do(req)

if err != nil {
fmt.Println("Error sending request:", err)
return

¥

defer resp.Body.Close()

// Read and parse the response
var result map[stringlinterface{}

18

API| Documentation - SvanLINK v1.1.7

if err := json.NewDecoder(resp.Body).Decode(&result); err != nil {
fmt.Println("Error decoding response:", err)
return
}
// Pretty print the JSON response
resultJSON, err := json.Marshallndent(result, "", " ")
if err !'= nil {
fmt.Println("Error formatting response:", err)
return
¥

fmt.Printin(string(resultJSON))

19

API| Documentation - SvanLINK v1.1.7

APl Documentation - SvanLINK v1.1.7
login
Description:

The 1ogin APl is used to authenticate a user by providing a password. If the password is
correct, the user is granted access to the system and receives a token.

Request Format:
Request Body:

{
"Request": "login",
"Params": {
"password": "Svantek312"
¥
¥

Request : The type of request, which is "1login" in this case.

params : An object containing the parameters for the request.
password : The password for authentication.

Success Response:

If the password is correct, the response will indicate a successful login and provide a token.

Response Format:

{
"Request": "login",
"Status": "ok",
"Response": {
"token": "userToken",
"message": "Login successful"
¥
}

Request : Reflects back the original request type ("login™).
status : The status of the request ("ok" for successful requests).

Response : An object containing the response data.

20

API| Documentation - SvanLINK v1.1.7

token : The token provided upon successful login. It must be supplied into any other

request described below.

message : A message indicating that the login was successful.

Error Response:
If the password is incorrect, the response will indicate an error.

Response Format:

{
"Request": "login",
"Status": "error",
"StatusMessage": "Wrong password"
¥

Request : Reflects back the original request type ("login™).
status : The status of the request ("error" for failed requests).

StatusMessage : A message indicating the reason for the error (e.g., "Wrong password").

Note. It is highly recommended to change it to keep your data and settings safe. Use

setNewPassword request to do this.

21

API| Documentation - SvanLINK v1.1.7

logout
Description:

The 1ogout APl is used to log out a user by invalidating the provided token. This will end the
user's session.

Request Format:
Request Body:

{
"Request": "logout",
"token": "userToken"

I

Request : The type of request, which is "logout" in this case.

params : An object containing the parameters for the request.
token : The token for the user session to be invalidated.

Success Response:

If the token is valid, the response will indicate a successful logout.

Response Format:

{
"Request": "logout",
"Status": "ok",
"Response'": {
"message": "Logout successful"
}
}

Request : Reflects back the original request type ("logout™).
status : The status of the request ("ok" for successful requests).

Response : An object containing the response data.
message : A message indicating that the logout was successful.

Error Response:
If the token is invalid, the response will indicate an error.

22

API| Documentation - SvanLINK v1.1.7

Response Format:

{
"Request": "logout",
"Status": "error",
"StatusMessage": "Invalid token"
¥

Request : Reflects back the original request type ("logout™).
Status : The status of the request ("error" for failed requests).

StatusMessage : A message indicating the reason for the error (e.g., "Invalid token").

23

API| Documentation - SvanLINK v1.1.7

setNewPassword
Description:

The setNewPassword API allows an authenticated user to change their password. The user must
provide their current password and enter the new password twice for confirmation. The new
password must be at least 8 characters long and contain at least one uppercase letter, one
lowercase letter.

Request Format:
Request Body:

{
"Request": "setNewPassword",
"Params": {
"oldPassword": "currentPassword", // The current password.
"newPassword": "newPassword", // The new password.
"newPassword2": '"newPassword" // Repeat of the new password for confirmation.
H
"token": "userToken"
¥

oldpassword (required): The user's current password.
newPassword (required): The new password to set.

newPassword2 (required): The new password repeated for confirmation. Must match

newPassword .

token (required): Authentication token for the session.

Success Response:

If the password is changed successfully, the response will indicate success.

Response Format:

{
"Request": "setNewPassword",
"Status": "ok",
"Response": {
""message'": '"Password changed successfully"
}
¥

Request : Reflects back the original request type ("setNewPassword").

24

API| Documentation - SvanLINK v1.1.7

status : The status of the request ("ok" for successful requests).

Response : An object containing the result message.

Error Responses:
If the request fails, an error response is returned.

Incorrect Password:

{
"Request'": "setNewPassword",
"Status": "error",
"StatusMessage": "Incorrect password"
}

StatusMessage : A message describing the reason for the error (e.g., incorrect old password,
new passwords do not match, etc.).

Note. To reset the password to default it is needed to remove the password file with the
same name.

On Linux systems it is located in the SvanLINK's folder.

On Windows it is located in C:\Users\YourUserName\AppData\lLocal\Svantek\SvanLINK\

25

API| Documentation - SvanLINK v1.1.7

licenseStatus
Description:

The tlicensestatus API retrieves the current license status of the device. The response includes
the status of the license, the license end date, the device ID, and a message regarding the
license status.

Request Format:
Request Body:

{
"Request": "licenseStatus",
"token": "userToken"

}

Success Response:
The response contains the current license status of the device.
Response Format:

"Request": "licenseStatus",

"Status": "ok",
"Response": {

"licenseStatus": "active",
"deviceId": "XXXXXXXXXXXXXXXX",
"licenseMessage": "The license is active"

b
b

licenseStatus : The current status of the license (active, expired, noLicense, error).
deviceId : The ID of the device.

licenseMessage : A message regarding the license status.

26

API| Documentation - SvanLINK v1.1.7

setLicense
Description:

The setLicense API activates a new license key for the device. You can provide the license key
encoded in a Base64 string, and the API will activate it for the device.

Important note. There are 2 types of licenses: hardware and device. "Hardware licence"
attaches the app to the current hardware configuration (PC, laptop, server, Raspberry Pi etc) on
which the app is running. The "device license" is attached to Svantek device.

Request Format:
Request Body:

{
"Request": "setlLicense",
"Params": {
"key": "License key file encoded in Base64" // License key encoded in Base64
H
"token": "userToken"
I

key : The license key encoded in a Base64 string.

Success Response:
The response indicates whether the license key was successfully activated for the device.
Response Format:

"Request'": "setlLicense",

"Status": "ok",
"Response": {

"licenseStatus": "active",
"deviceId": '"1424422045401",
"licenseMessage": "The license was activated successfully"

b
b

licenseStatus : The current status of the license (e.g., "active").
deviceId : The ID of the device.

licenseMessage : A message regarding the license status.

27

API Documentation - SvanLINK v1.1.7
getStatus

Description:

The getstatus API retrieves the status of specified devices. You can request specific device
serial numbers, and the API will return the corresponding status data in the response.

Request Format:
Request Body:

"Request": '"getStatus",
"Params": {

"devices": [113200, 223200] // Optional: List of device serial numbers.
H

"token": "userToken"

devices (optional): A list of device serial numbers. If not provided, status data for all available
devices will be returned.

Success Response:

The response contains the status data for each requested device.

28

API Documentation - SvanLINK v1

Response Format:

{
"Request": "getStatus",
"Status": "ok",
"Response'": [
{
"serial: 113200,
"type": "SV 303",
"deviceName": '"Demo_1",
"firmware": "1.03.9",
"battery": 90,
"memorySize": 16874,
"memoryFree": 30,
"deviceWarning": [
"Message 1 from device",
""Message 2 from device"
1,
"measurementStatus": "start",
"measurementType": "1/3 Octave",
"intPeriod": 30

"serial': 223200,
"type": 'SV 303",
"deviceName": "Demo_2",
"firmware": "1.03.7",
"battery": 33,
"memorySize": 65535,
"memoryFree": 54,
"deviceWarning": [
"Message 1 from device",
"Message 2 from device"
1,
"measurementStatus": "stop",
"measurementType": "1/1 Octave",
"intPeriod": ©

Response Fields:

A7

Request : Reflects back the original request type ("getStatus").

status : The status of the request ("ok" for successful requests).

Response : An array of objects containing status data for the requested devices.

serial : The serial number of the device.
type : The type of the device (e.g., "sv 303").
deviceName : The name of the device.

firmware : The firmware version of the device.

29

Device Object:

API| Documentation - SvanLINK v1.1.7

battery : The battery level of the device (percentage).

memorySize : The total memory size of the device (MB).

memoryFree : The free memory of the device (percentage).

deviceWarning : An array of warning messages from the device.

measurementStatus : The measurement status of the device (e.g., "start", "stop").

measurementType : The type of measurement being performed (e.g., "1/3 Octave" , "1/1

Octave").

intPeriod : The integration period for the measurement (seconds, o for infinity).

30

API| Documentation - SvanLINK v1.1.7

getResults
Description:

The getResults API retrieves measurement results for specified devices. You can request
specific result types and device serial numbers, and the API will return the corresponding data
in the response.

Request Format:
Request Body:

{
"Request": "getResults",
"Params": {
"results": ["LAeq", "LCeq"l, // Optional: List of result types to fetch.
"devices": [123456, 654235], // Optional: List of device serial numbers.
"average'": "true", // Required: Whether to return averaged results.
"vibrationsDB": false // Optional: Whether to show vibrations in dB
instead of mm/s or m/s2.
H
"token": "userToken"
}

results (optional): A list of result types to retrieve. Examples include:
"LAeq" : Equivalent continuous sound level A-weighted.

"LCeq" : Equivalent continuous sound level C-weighted.
If omitted, all available result types will be returned.

devices (optional): Alist of device serial numbers. If not provided, data for all available devices
will be returned.

average (required): Aboolean value ("true" or "false") indicating whether to return averaged
results.

vibrationsDB (optional): A boolean value indicating whether to show vibrations in dB instead of
mm/s or m/s?. Defaults to false .

token (required): Authentication token for the session.

Success Response:

The response contains the requested measurement data for each device.

31

API| Documentation - SvanLINK v1.1.7

Response Format:

{
"Request": '"getResults",
"Status": "ok",
"Response'": [
{
"serial": 123456,
"type": "SV 303",
"result": [
{
"name": "LAeq",
"value": 100.0,
"unit": "dB"
I
{
"name": "LCeq",
"value": 112.1,
"unit": "dB"
}
1
I
{
"serial": 654235,
"type": 'SV 303",
"result": [
{
"name": "LAeq",
"value": 98.2,
"unit": "dB"
I
{
"name": "LCeq",
"value": 88.8,
"unit": "dB"
}
1
}
]
}

Response Fields:

Request : Reflects back the original request type ("getResults™).
status : The status of the request ("ok" for successful requests).

Response : An array of objects containing measurement data for the requested devices.

serial : The serial number of the device.

. Device Object:
type : The type of the device (e.g., "303").

result : An array containing the results for the device.
name : The type of result (e.g., "LAeq" , "LCeq").

32

APl Documentation - SvanLINK v1.1.7
value : The measured value for the result.

unit : The unit of the result (e.g., "ds" for decibels).

Error Responses:

Missing Parameters:

{

"Request'": 'getResults",

"Status": "error",

"Error": "Missing required parameters"
}

Invalid Parameter Format:

{
"Request'": '"getResults",
"Status": "error",
"Error": "Invalid parameter format"
¥
Notes:

If neither results nor devices are provided, the APl will return all available data for all devices.

The average parameter is mandatory and determines whether the results should be averaged
across measurements.

33

API| Documentation - SvanLINK v1.1.7

getSpectrumResults
Description:

The getsSpectrumResults API retrieves spectrum results for specified devices. You can request
specific spectrum types and device serial numbers, and the APl will return the corresponding
data in the response.

Request Format:
Request Body:

{
"Request": '"getSpectrumResults",
"Params": {
"devices": [123456, 654235], // Optional: List of device serial numbers.
"vibrationsDB": false // Optional: Whether to show vibrations in
dB instead of mm/s or m/sZ2.
I
"token": "userToken"

b

devices (optional): A list of device serial numbers. If not provided, data for all available devices
will be returned.

vibrationsDB (optional): A boolean value indicating whether to show vibrations in dB instead of
mm/s or m/s?. Defaults to false .

token (required): Authentication token for the session.

Success Response:

The response contains the requested spectrum data for each device.

34

API| Documentation - SvanLINK v1.1.7

Response Format:

{

"Request": '"getSpectrumResults",
"Status": "ok",
"Response'": [

{

-

"serial': 123456,

"type": "SV 303",

"status": "ok",

"measurement": "start",

"resultLabel": '"LZeq",

"resultType": "1/1 Octave",

"measurementMode": "sound",

"results": [
{name: "31.5", value: 59.55, unit: "dB"}
{name: "63", value: 47.22, unit: "dB"}
{name: "125", value: 41.01, unit: "dB"}
{name: "250", value: 41.21, unit: "dB"}
{name: "500", value: 38.36, unit: "dB"}
{name: "1.0k", value: 38.69, unit: "dB"}
{name: "2.0k", value: 40.36, unit: "dB"}
{name: "4.0k", value: 35.02, unit: "dB"}
{name: "8.0k", value: 30.13, unit: "dB"}
{name: "16k", value: 32.06, unit: "dB"}
{name: "A", value: 44.92, unit: "dB"}
{name: "C", value: 61.96, unit: "dB"}
{name: "Z", value: 72.56, unit: "dB"}

"serial": 654235,

"type'": 'SV 303",

"status": "ok",

"measurement": "start",

"resultLabel": '"LZeq",

"resultType": "1/1 Octave",

"measurementMode": "sound",

"results": [
{name: "31.5", value: 60.11, unit: "dB"}
{name: "63", value: 44.22, unit: "dB"}
{name: "125", value: 32.01, unit: "dB"}
{name: "250", value: 41.23, unit: "dB"}
{name: "500", value: 38.54, unit: "dB"}
{name: "1.0k", value: 38.69, unit: "dB"}
{name: "2.0k", value: 40.36, unit: "dB"}
{name: "4.0k", value: 35.34, unit: "dB"}
{name: "8.0k", value: 35.13, unit: "dB"}
{name: "16k", value: 32.23, unit: "dB"}
{name: "A", value: 44.92, unit: "dB"}
{name: "C", value: 61.96, unit: "dB"}
{name: "Z", value: 66.56, unit: "dB"}

35

API| Documentation - SvanLINK v1.1.7

Response Fields:

Request : Reflects back the original request type ("getSpectrumResults™).
status : The status of the request ("ok" for successful requests).

Response : An array of objects containing spectrum data for the requested devices.

serial : The serial number of the device.
. Device Object:
type : The type of the device (e.g., "303").
status : "ok" if no error detected.
measurement : The measurement status of the device (e.g., "start", "stop").
resultLabel : The label of the spectrum result.
resultType : The type of spectrum result (e.g., "1/1 Octave", "1/3 Octave").

measurementMode : The mode of measurement "sound|vibrations" .

results : An array containing the spectrum data for the device.
name : The type of frequency.

data : The spectrum data array.

unit : The unit of the result (e.g., "ds" for decibels).

Error Responses:

Missing Parameters:

{
"Request": '"getSpectrumResults",
"Status": "error",
"Error": "Missing required parameters"
¥

Invalid Parameter Format:

{
"Request": "getSpectrumResults",
"Status": "error",
"Error'": "Invalid parameter format"
I

36

API| Documentation - SvanLINK v1.1.7

Notes:

If neither spectrumTypes nor devices are provided, the APl will return all available spectrum
data for all devices.

startMeasurement
Description:

The startMeasurement API starts measurements for specified devices. You can request specific
measurement types and device serial numbers, and the API will start the corresponding

measurements.

Request Format:
Request Body:

"Request": "startMeasurement",
"Params": {
"devices": [123456, 654235] // Optional: List of device serial numbers.

H

"token": "userToken"

devices (optional): Alist of device serial numbers. If not provided, measurements for all
available devices will be started.

Success Response:
The response confirms that the requested measurements have been started for each device.

Response Format:

{

"Request": '"startMeasurement",
"Status": "ok"

b

Response Fields:

Request : Reflects back the original request type ("startMeasurement").

status : The status of the request ("ok" for successful requests).

37

API| Documentation - SvanLINK v1.1.7

Notes:

If neither measurementTypes nor devices are provided, the APl will start all available

measurements for all devices.

stopMeasurement
Description:

The stopMeasurement APl stops measurements for specified devices. You can request specific
measurement types and device serial numbers, and the API will stop the corresponding

measurements.

Request Format:
Request Body:

"Request": "stopMeasurement",
"Params": {

"devices": [123456, 654235] // Optional: List of device serial numbers.
H

"token": "userToken"

devices (optional): Alist of device serial numbers. If not provided, measurements for all
available devices will be stopped.

Success Response:

The response confirms that the requested measurements have been stopped for each device.

Response Format:

{

"Request": "stopMeasurement",
"Status": "ok",

b

Response Fields:

Request : Reflects back the original request type ("stopMeasurement”).

status : The status of the request ("ok" for successful requests).

38

API| Documentation - SvanLINK v1.1.7

Notes:

If neither measurementTypes nor devices are provided, the APl will stop all available

measurements for all devices.

39

API Documentation - SvanLINK v1.1.7
getConfig

Description:

The getconfig API retrieves the current configuration for specified devices. You can request
specific configuration parameters and device serial numbers, and the API will return the
corresponding configuration data in the response.

Request Format:
Request Body:

{
"Request": "getConfig",

"token": "userToken"

}

Success Response:

The response contains the requested configuration data for each device.

40

API| Documentation - SvanLINK v1.1.7

Response Format:

"Request": "getConfig",
"Status": "ok",
"Response": {
"app": {
"tcpPort": 8000,
"echo": true,
"wsEnabled": false,
"wsPort'": 8001,
"activeUI": true,
"disabledExternallLogin": true,
"'svannet": true,
"matt": {
"enabled": true,
"username": "admin",
"port": 1883,
"host": "127.0.0.1"
¥
+
"uit: {
"liveView": {
"resultTypes": "LAF;LAeq;LCpeak",
"currentTab": "liveResultsTab"
H
"thresholdView": {
"thresholdOrange": 45,
"thresholdRed": 75,
"k": 9,
"resultType": "LAF"

Response Fields:

Request : Reflects back the original request type ("getConfig").
status : The status of the request ("ok" for successful requests).

Response : An object containing configuration data for the requested devices.

app : An object containing application configuration.
tepport : The TCP port number (e.g., 8000). Response Object:

echo : A boolean indicating if echo is enabled (e.g., true). If it is enabled,
the server will echo back the request in "Echo" parameter.

wsEnabled : A boolean indicating if WebSocket is enabled (e.g., false).
wsPort : The WebSocket port number (e.g., 8001).

activeUI : A boolean indicating if the web Ul is active (e.g., true).

41

API| Documentation - SvanLINK v1.1.7

disabledExternallLogin : A boolean indicating if live results are availaible without password for
external clients (e.g., true).

svannet : A boolean indicating if the SvanLINK will connect Svantek devices to SvanNET
(e.g., true).

mgtt : An object containing MQTT configuration.
enabled : A boolean indicating if the MQTT is enabled (e.g., true).

username : The username for the MQTT (e.g., "admin").
port : The port number for the MQTT (e.g., 1883).
host : The host for the MQTT (e.g., "127.0.0.1").

ui (optional): An object containing web Ul configuration.

42

API| Documentation - SvanLINK v1.1.7

setConfig
Description:

The setconfig API sets the configuration for specified devices. You can provide specific
configuration parameters and device serial numbers, and the API will update the corresponding
configuration data.

Note: If the user sends "default": true inthe request, all settings will be reset to their default

values.

Request Format:
Request Body:

{
"Request": "setConfig",
"Params": {
"app": {
"tcpPort": 8000,
"echo": true,
"wsEnabled": false,
"wsPort": 8001,
"activeUI": true,
"disabledExternallLogin": true,
"svannet": true,
"mgtt": {
"enabled": true,
"username": "admin",
"port": 1883,
"host": "127.0.0.1",
"ssl": true,
"caCert": "baseb64_encoded_cert",
"certFile": "base64_encoded_cert",
"keyFile": "base64_encoded_key"
}
I
"ui: { // Paarameters that are used to configure the web UI.
"liveView": {
"resultTypes": "LAF;LAeq;LCpeak",
"currentTab": "liveResultsTab"
+
"thresholdView": {
"thresholdOrange": 45,
"thresholdRed": 75,
"k": 0,
"resultType": "LAF"
}
}
H
"token": "userToken"

b

app (required): An object containing application configuration.

43

API| Documentation - SvanLINK v1.1.7

tcpport : The TCP port number (e.g., 8000).

echo : A boolean indicating if echo is enabled (e.g., true). If it is enabled, the server will
echo back the request in "Echo" parameter.

wsEnabled : A boolean indicating if WebSocket is enabled (e.g., false).
wsPort : The WebSocket port number (e.g., 8001).
activeUI : A boolean indicating if the web Ul is active (e.g., true).

disabledExternallogin : A boolean indicating if ;ive results are availaible without password for
external clients (e.g., true).

svannet : A boolean indicating if the SvanLINK will connect Svantek devices to SvanNET
(e.g., true).

mgtt : An object containing MQTT configuration.
enabled : A boolean indicating if the MQTT is enabled (e.g., true).

username : The username for the MQTT (e.g., "admin").

port : The port number for the MQTT (e.g., 1883).

host : The host for the MQTT (e.g., "127.0.0.1").

ss1 : Aboolean indicating if the MQTT is using SSL/TLS (e.g., true).
cacert : The CA certificate for the MQTT (e.g., "base64_encoded_cert™).
certFile : The certificate file for the MQTT (e.g., "base64_encoded_cert™).
keyFile : The key file for the MQTT (e.g., "base64_encoded_key").

ui (optional): An object containing web Ul configuration.

Success Response:

The response confirms that the configuration has been set for each device.

Response Format:

{

"Request": "setConfig",
"Status": "ok"
}

44

API| Documentation - SvanLINK v1.1.7

Response Fields:

Request : Reflects back the original request type ("setConfig").

status : The status of the request ("ok" for successful requests).

45

API| Documentation - SvanLINK v1.1.7

getSetup
Description:

The getsetup API retrieves the setup configuration for a specified device. You can request the
setup configuration for a specific device serial number, and the API will return the corresponding
setup data in the response.

Request Format:
Request Body:

"Request": "getSetup",
"Params": {
""device": 85609 // Device serial number

b

"token": "userToken"

device : The serial number of the device for which the setup configuration is requested.

Success Response:

The response contains the setup configuration data for the requested device.

Response Format:

"Request": "getSetup",
"Status": "ok",
"Response": {
"setupfile": "file encoded in Base64 string format"

b
b

setupfile : The setup configuration file encoded in a Base64 string format.

46

API| Documentation - SvanLINK v1.1.7

setSetup
Description:

The setsetup APl uploads a setup configuration to a specified device. You can provide the
setup configuration file encoded in a Base64 string, and the API will upload it to the specified

device.

Request Format:
Request Body:

{
"Request": '"setSetup",
"Params": {
""device": 85609, // Device serial number
"overwrite": true, // Whether to overwrite the existing setup
"file": "file encoded in Base64 string" // Setup configuration file encoded in
Base64
H
"token": "userToken"
}

device : The serial number of the device to which the setup configuration is uploaded.
overwrite : A boolean indicating whether to overwrite the existing setup.

file : The setup configuration file encoded in a Base64 string.

Success Response:

The response indicates whether the setup configuration was successfully uploaded to the
device.

Response Format:

{
"Request": "setSetup",

"Status": "ok"
¥

message : A message indicating the result of the setup upload.

47

API| Documentation - SvanLINK v1.1.7

copySetup
Description:

The copysetup API copies a setup configuration from a source device to one or more target
devices. You can specify the source device, target devices, and whether to overwrite the
existing setup on the target devices.

Request Format:
Request Body:

"Request": "copySetup",
"Params": {
"sourceDevice": 85609, // Source device serial number
"targetDevices": [112233, 453789], // List of target device serial numbers
"overwrite": true // Whether to overwrite the existing setup on the target devices
H

"token": "userToken"

sourceDevice : The serial number of the source device from which the setup configuration is
copied.

targetDevices : Alist of serial numbers of the target devices to which the setup configuration is

copied.
overwrite : A boolean indicating whether to overwrite the existing setup on the target devices.

Success Response:

The response indicates whether the setup configuration was successfully copied to the target
devices.

Response Format:

{
"Request": '"copySetup",
"Status": "ok"

b

message : A message indicating the result of the setup copy operation.

48

API| Documentation - SvanLINK v1.1.7

sendRawCommand
Description:

The sendrawCommand API allows you to send # commands directly to the connected device.
These commands must follow the format and syntax specified in the device's user manual. The
API sends the command to the device and returns the response.

Request Format:
Request Body:

{
"Request": "sendRawCommand",
"Params": {
"devices": [123456, 654235], // Optional: List of device serial numbers.
""command": "#1,U?,N?;" // The raw command to send to the device
o
"token": "userToken"
}

command : The raw command string to be sent to the device. This must follow the syntax
specified in the device's user manual.

token : The authentication token for the session.

Success Response:
The response contains the result of the command execution on the device.

Response Format:

{
"Request": '"sendRawCommand",
"Status": "ok",
"Response": [
{
"serial": 123456,
"response": "#1,U303,N123456;"
I
{
"serial': 654235,
"response": "#1,U303,N654235;"
}
1
}

result : A message indicating the result of the command execution.

49

API| Documentation - SvanLINK v1.1.7

Notes:

Ensure that the command parameter follows the syntax and format specified in the device's user

manual.
The token parameter is mandatory and must be valid for the session.

Use this API with caution, as sending incorrect commands may result in unexpected behavior or

errors on the device.

50

API| Documentation - SvanLINK v1.1.7

getFilelList
Description:

The getFileList API retrieves a list of files stored on devices. All parameters in params are
optional and act as filters. If a parameter is omitted, no filtering is applied for that field.

Request Format:
Request Body:

{
"Request": '"getFilelList",
"Params": {
"devices": [3502], // Optional: List of device serial numbers to
filter.
""mode": "flat", // Optional: "flat" for a flat list, "tree"
for hierarchical (default: "flat").
"types": ["TXT", "SVL"], // Optional: List of file types/extensions to
filter.

"startDate": "2025-05-13 10:30:00", // Optional: Start date/time (YYYY-MM-DD
HH:mm:ss) to filter files created after this date.

"endDate": '2025-5-13 11:00:00" // Optional: End date/time (YYYY-MM-DD
HH:mm:ss) to filter files created before this date.
+
"token": "userToken"

}

devices (optional): List of device serial numbers. Only files from these devices will be listed.
mode (optional): "flat" for a flat file list, "tree" for a directory tree. Defaultis "flat" .
types (optional): List of file types/extensions to include (e.g., "Tx1", "svL").

startbate (optional): Only include files created after this date/time.

endbate (optional): Only include files created before this date/time.

token (required): Authentication token.

Success Response:

The response contains a list of files for each device matching the filters, including file name,
size, creation date, and type.

51

API| Documentation - SvanLINK v1.1.7

Response Format:

{
"Request": '"getFilelList",
"Status": "ok",
"Response": [

{

"serial": 123456,

Iltypell: IISV 303"'

"files": [

{

"name": "/S1.SVL",
"size": 1203,
"dateCreated": "2025-05-13 10:50:40",
"type": "TXT"

"name'": "/W1.WAV",

"size": 270336,

"dateCreated": "2025-05-13 10:52:28",
Il.typell: IISVLII

Response Fields:

Request : Reflects back the original request type ("getFileList").
status : The status of the request ("ok" for successful requests).

Response : An array of objects, one per device, each containing:
serial : Device serial number.

type : Device type/model.

files : Array of file objects:
name : Full file path/name.

size : File size in bytes.
dateCreated : File creation date/time (YYYY-MM-DD HH:mm:ss).

type : File type/extension (e.g., "Tx1", "svL").

Notes:

All rarams fields are optional and act as filters. If omitted, no filtering is applied for the request.

If types is omitted, all file types are included.

52

API| Documentation - SvanLINK v1.1.7

The mode parameter controls whether the file list is flat or hierarchical.

53

API| Documentation - SvanLINK v1.1.7

downloadFile
Description:

The downloadFile API allows you to download a specific file from a device. The response is a
stream of bytes representing the file content.

Request Format:
Request Body:

{
"Request": "downloadFile",
"Params": {
"device": 123456, // Required: Device serial number.
"mode": '"byPath|current", // Required: Mode for file download.
"value": "/S1.SVL|SVL" // Required: Depending on mode, either file path or file
type.
H
"token": "userToken"
¥

device (required): The serial number or identifier of the device.

mode (required): Mode for file download. Use "byrath" to specify the file path, or "current" to
download the current file.

value (required): Depending on the mode:
"byPath" : Full file path (e.g., "/s1.svL").

“current" : File type (e.g., "svL", "wAv").

token (required): Authentication token.

Response:

The response is a stream of bytes representing the requested file. The content type and
headers are set for file download.

The file is returned as a binary stream (not JSON).

Appropriate headers (e.g., Content-Disposition, Content-Type) are set for file download.

Notes:

Use this endpoint to download a single file from the specified device.

54

API| Documentation - SvanLINK v1.1.7

Make sure to handle the response as a file/binary stream in your client.

55

API| Documentation - SvanLINK v1.1.7

downloadFilelList

Description:

The downloadFileList API allows you to download multiple files from a device in a single
request. The response is a stream of bytes, as a ZIP archive containing the requested files.

Request Format:
Request Body:

{
"Request": "downloadFileList",
"Params": {
"device": 123456, // Required: Device serial number or identifier.
"files": [
"path/file00l.svl",
"path/file002.wav"
1, // Required: List of file paths to download.
"omit": true // Optional: Whether to omit files that do not
exist on the device.
H
"token": "userToken"

}

device (required): The serial number or identifier of the device.
files (required): List of file paths to download from the device.
token (required): Authentication token.

omit (optional): If setto true, files that do not exist on the device will be omitted in the archive
received in respones, otherwise error will be returned. Defaultis false .

Response:

The response is a stream of bytes representing the requested files, typically as a ZIP archive.

The files are returned as a binary stream (not JSON).

Appropriate headers (e.g., Content-Disposition, Content-Type: application/zip) are set for file
download.

Notes:

Use this endpoint to download multiple files from the specified device in a single request.

Make sure to handle the response as a file/binary stream in your client.

56

API| Documentation - SvanLINK v1.1.7

deleteFile
Description:

The deleterile API allows you to delete a specific file from a device. The request must specify
the device serial number and the full path to the file to be deleted.

Request Format:
Request Body:

"Request'": "deleteFile",

"Params": {
"device": 113200, // Required: Device serial number.
"path": "/L4.SVL" // Required: Full file path to delete.

}.

"token": "userToken"

device (required): The serial number of the device.
path (required): The full path to the file to be deleted on the device.

token (required): Authentication token.

Success Response:
The response indicates whether the file was successfully deleted from the device.

Response Format:

{
"Request": "deleteFile",
"Status": "ok",
"Response'": {
"message": "File deleted successfully"
}
}

Request : Reflects back the original request type ("deleteFile™).
status : The status of the request ("ok" for successful requests).

Response : An object containing a message about the result.

57

API| Documentation - SvanLINK v1.1.7

Notes:

Use this endpoint to delete a single file from the specified device.
If the file does not exist, an error message will be returned in the response.

Deleting files is irreversible. Use with caution.

58

API Documentation - SvanLINK v1.1.7
getVersion

Description:

The getversion API retrieves the current version of the SvanLINK application. This is useful for
checking which version of the software is running on the server.

Request Format:
Request Body:

{
"Request'": '"getVersion",
"token": "userToken"

b

Request : The type of request, which is "getversion" in this case.

token : (required) Authentication token for the session.

Response:
The response contains the current version of the SvanLINK application.

Response Format:

{
"Request'": 'getVersion",
"Status": "ok",
"Response": {
"version": "1.1.7"
¥
¥

Request : Reflects back the original request type ("getversion").
status : The status of the request ("ok" for successful requests).

Response : An object containing the version string.

59

API| Documentation - SvanLINK v1.1.7

checkUpdate
Description:

The checkupdate API checks if a new version of the SvanLINK application is available. It returns
information about the latest version, its release date, and changelog.

Request Format:
Request Body:

{
"Request": '"checkUpdate",
"token": "userToken"

b

Request : The type of request, which is "checkupdate" in this case.

token : (required) Authentication token for the session.

Success Response:

The response indicates whether an update is available and provides details about the latest
version.

Response Format:

"Request": '"checkUpdate",
"Status": "ok",
"Response'": {
"available": true,
"critical"™: false,
"version": "1.0.0",
"date": '"2025-05-01",
"changelog": "- Added new features\n- Fixed bugs\n- Improved performance"

available : true if a newer version is available, false otherwise.
critical : true if the update is critical, false otherwise.
version : The latest available version.

date : Release date of the latest version (YYYY-MM-DD).

60

API| Documentation - SvanLINK v1.1.7

changelog : Description of changes in the latest version.

Error Response:

{

"Request": "checkUpdate",

"Status": "error",

"StatusMessage": "Unable to check for updates"
¥

StatusMessage : A message describing the reason for the error (e.g., network issues,
authentication failure).

Notes:

This endpoint is used to inform users if a new version of SvanLINK is available for download.

Requires a valid authentication token.

61

API Documentation - SvanLINK v1.1.7
downloadUpdate

Description:

The downloadupdate APl downloads the latest available update for the SvanLINK application. It
initiates the download process or returns the current status if already in progress or completed.

Request Format:
Request Body:

{
"Request": "downloadUpdate",
"token": "userToken"

I

Request : The type of request, which is "downloadUpdate" in this case.

token : (required) Authentication token for the session.

Success Response:
The response indicates the status of the update download process.

Response Format:

{
"Request'": "downloadUpdate",
"Status": "ok",
"Response": {
"status": "downloading|downloaded"
}
}

status : "downloaded" if the update has been downloaded, "downloading" if the download is in

progress.

Error Response:

{

"Request": "downloadUpdate",

"Status": "error",

"StatusMessage": "Unable to download update"
¥

62

API| Documentation - SvanLINK v1.1.7

StatusMessage : A message describing the reason for the error (e.g., network issues,
authentication failure).

Notes:

This endpoint is used to download the latest update for SvanLINK.
Requires a valid authentication token.

After a successful download, use installupdate to install the update.

63

API Documentation - SvanLINK v1.1.7
installUpdate
Description:

The installupdate API installs the latest downloaded update for the SvanLINK application. It
starts the update process and may require elevated privileges depending on the operating

system.

Request Format:
Request Body:

{
"Request": "installUpdate",
"token": "userToken"

}

Request : The type of request, which is "installupdate" in this case.

token : (required) Authentication token for the session.

Success Response:
The response indicates that the update process has started.

Response Format:

{
"Request": "installUpdate",
"Status": "ok",
"Response'": {
"status": "updating"
}
}

status : "updating"” means the update process has started successfully.

Error Response:

{
"Request": "installUpdate",
"Status": "error",
"StatusMessage": "Error message"
I

64

API| Documentation - SvanLINK v1.1.7

StatusMessage : A message describing the reason for the error (e.g., missing updater file,

permission issues).

Notes:

This endpoint requires that the update has already been downloaded using downloadUpdate .
Requires a valid authentication token.

The update process may restart or stop the application.

65

API| Documentation - SvanLINK v1.1.7

setMqttConfig
Description:

The setvgttconfig API configures the MQTT broker connection settings for SvanLINK. This
includes the broker host, port, authentication credentials, and enables or disables the MQTT
service. After configuration, the application will restart to apply the changes.

Request Format:
Request Body:

{
"Request": "setMqgttConfig",
"Params": {
"enabled": true, // Optional: Enable or disable MQTT service
(boolean)
"host": "mgtt.example.com", // Optional: MQTT broker host address
"port": 1883, // Optional: MQTT broker port number
"username": "mqtt_user", // Optional: MQTT broker username
"password": "mgtt_password", // Optional: MQTT broker password
"ss1": true, // Optional: A boolean indicating if the MQTT
is using SSL/TLS (e.g., true).
"caCert": "base64_encoded_cert", // Optional: The CA certificate for the MQTT

(e.g., "baseb64_encoded_cert").

"certFile": "base64_encoded_cert", // Optional: The certificate file for the MQTT
(e.g., "base64_encoded_cert").

"keyFile": "base64_encoded_key" // Optional: The key file for the MQTT (e.g.,
"baseb64_encoded_key").

1
"token": "userToken"

}

enabled (optional): A boolean value to enable or disable the MQTT service. When setto true ,
the MQTT service will be active.

host (optional): The hostname or IP address of the MQTT broker.

port (optional): The port number for the MQTT broker connection (typically 1883 for non-SSL
or 8883 for SSL).

username (optional): The username for authenticating with the MQTT broker.

password (optional): The password for authenticating with the MQTT broker. This is stored
securely in a separate file.

certificate (optional): SSL certificate file encoded in Base64 format for secure MQTT
connections (TLS/SSL).

token (required): Authentication token for the session.

66

API| Documentation - SvanLINK v1.1.7

Success Response:

If the configuration is successfully applied, the response will indicate success. Note that the
application will restart after a successful configuration update.

Response Format:

{

"Request": "setMgttConfig",
"Status": "ok"
I

Request : Reflects back the original request type ("setMgttConfig").

status : The status of the request ("ok" for successful requests).

Error Response:

If the request fails, an error response is returned.

Response Format:

{
"Request": "setMgttConfig",
"Status": "error",
"StatusMessage": "Error message describing what went wrong"
¥
Notes:

This endpoint requires a valid authentication token and an active license.
All parameters in params are optional. Only the parameters provided will be updated.

After a successful configuration update, the SvanLINK application will automatically restart to
apply the changes.

The password is stored securely in a separate file and is not included in the main configuration.
If a certificate is provided, it will be used for secure TLS/SSL connections to the MQTT broker.

To disable the MQTT service, set enabled to false .

67

API Documentation - SvanLINK v1.1.7
getMgttConfig
Description:

The getvgttconfig API retrieves the current MQTT broker configuration settings, including the
broker host, port, username, and enabled status. Note that the password is not returned for

security reasons.

Request Format:
Request Body:

{
"Request": "getMqgttConfig",

"token": "userToken"

}

Request : The type of request, which is "getMgttConfig" in this case.

token (required): Authentication token for the session.

Success Response:
The response contains the current MQTT broker configuration.

Response Format:

{
"Request": '"getMgttConfig",
"Status": "ok",
"Response'": {
"enabled": true,
"host": "mgtt.example.com",
"port": 1883,
"username": "mqtt_user",
"ss1": true
¥
¥

Request : Reflects back the original request type ("getMgttConfig").
status : The status of the request ("ok" for successful requests).

Response : An object containing the MQTT configuration:
enabled : A boolean indicating whether the MQTT service is enabled.

host : The MQTT broker hostname or IP address.

68

API| Documentation - SvanLINK v1.1.7
port : The MQTT broker port number.
username : The MQTT broker username.

Notes:

This endpoint requires a valid authentication token and an active license.
The password is not returned in the response for security reasons.

If a configuration value is not set, it may be null or omitted from the response.

69

API| Documentation - SvanLINK v1.1.7

addMqttTopic
Description:

The addvgttTopic API creates or updates an MQTT topic configuration. This allows you to
configure which data requests should be automatically published to the MQTT broker at
specified intervals. The configuration is similar to WebSocket channel configuration.

Request Format:
Request Body:

{
"Request": "addMqttTopic",
"Params": {
"Topic": "main", // Optional: Topic name. Default is "main"
"Requests": [
{
"Request": '"getResults",
"Interval: 1000 // Interval in milliseconds (ms). Minimum interval is 100ms.
I
{
"Request": '"getSpectrumResults",
"Interval": 5000 // Interval in milliseconds (ms). Minimum interval is 100ms.
}
1
H
"token": "userToken"
}

params (required): A configuration object containing:
Topic (optional): The name of the MQTT topic. Default is "main" .

Requests (required): An array of request objects that will be automatically published to the
MQTT broker:
Request : The type of data request to publish. Available requests include:
getFileList - Get list of files

getResults - Get measurement results
getSpectrumResults - Get spectrum results
getStatus - Get device statuses

getVersion - Get version information
licenseStatus - Get license status
sendrRawCommand - Send raw command to device

startMeasurement - Start measurement

70

API| Documentation - SvanLINK v1.1.7

Interval : The interval in milliseconds (ms) at which the request is published. Minimum
interval is 100ms.

token (required): Authentication token for the session.

Success Response:

If the MQTT topic is successfully created or updated, the response will indicate success.

Response Format:

{
"Request": "addMqttTopic",
"Status": "ok"

}

Request : Reflects back the original request type ("addMgttTopic").

status : The status of the request ("ok" for successful requests).

Error Response:

If the request fails, an error response is returned.

Response Format:

{

"Request": "addMqttTopic",

"Status": "error",

"StatusMessage": "missing config param" or "config must be in json"
}

Note: The error message "missing config param" refers to the params object being missing or
empty. The error message "config must be in json" indicates that params must be a valid JSON
object.

Notes:

This endpoint requires a valid authentication token. A license is not required.
If a topic with the same name already exists, it will be updated with the new configuration.
The configuration is saved persistently and will be restored when the application restarts.

Data will be automatically published to the MQTT broker according to the configured intervals.

71

API| Documentation - SvanLINK v1.1.7

Each published message includes a timestamp in the format "vyyy-MM-DDTHH:mm:s5.555" .

Use getMgttTopicList to see all configured MQTT topics.

72

API| Documentation - SvanLINK v1.1.7

deleteMqttTopic
Description:

The deleteMgttTopic API deletes a specific MQTT topic configuration. This will stop all
automatic data publishing for that topic and remove it from the configuration.

Request Format:
Request Body:

"Request": "deleteMgttTopic",
"Params": {

"topic": "main" // Required: The name of the MQTT topic to delete
b

"token": "userToken"

topic (required): The name of the MQTT topic to delete.

token (required): Authentication token for the session.

Success Response:

If the topic is successfully deleted, the response will indicate success.

Response Format:

{

"Request": '"deleteMgttTopic",

"Status": "ok",

"StatusMessage'": "The topic has been deleted successfully"
b

Request : Reflects back the original request type ("deleteMgttTopic").
status : The status of the request ("ok" for successful requests).

Response : An object containing a confirmation message.

Error Response:

If the request fails, an error response is returned.

73

API| Documentation - SvanLINK v1.1.7

Missing Parameter:

{

"Request": "deleteMgttTopic",

"Status": "error",

"StatusMessage": "The \"topic\" parameter is missing"
}

Topic Doesn't Exist:

{
"Request": "deleteMqttTopic",
"Status": "error",
"StatusMessage": "Error delete topic"
¥
Notes:

This endpoint requires a valid authentication token. A license is not required.

Deleting a topic will:
Stop all periodic data publishing for that topic

Remove the topic from the MQTT configuration
Save the updated configuration to persistent storage

The deletion is permanent and cannot be undone. The topic configuration will need to be
recreated if needed.

Use getMgttTopicList to see available topics before attempting to delete one.

74

API Documentation - SvanLINK v1.1.7
getMqttTopicList
Description:

The getMgttTopicList API retrieves a list of all configured MQTT topics and their configurations.
This includes information about which requests are being published and at what intervals.

Request Format:
Request Body:

{
"Request": '"getMgttTopicList",
"token": "userToken"

I

Request : The type of request, which is "getMgttTopicList" in this case.

token (required): Authentication token for the session.

Success Response:

The response contains all configured MQTT topics and their associated request configurations.

75

API| Documentation - SvanLINK v1.1.7

Response Format:

{
"Request": '"getMgttTopicList",
"Status": "ok",
"Response": [

{
"Topic": "main",
"Requests": [
{
"Request": '"getResults",
"Interval: 1000
I
{
"Request": '"getSpectrumResults",
"Interval": 5000
¥
]
}I
{
"Topic": "deviceStatus",
"Requests": [
{
"Request": "getStatus",
"Interval': 15000
¥
]
}

Response Fields:

Request : Reflects back the original request type ("getMgttTopicList").
status : The status of the request ("ok" for successful requests).

Response : An object containing all configured MQTT topics:
[topic_name] : Each topic is represented by its name as a key:
Requests : An array of request objects configured for this topic:

Request : The type of request (e.g., "getResults" , "getSpectrumResults™).

Interval : The interval in milliseconds (ms) at which the request is published.

Notes:

This endpoint requires a valid authentication token. A license is not required.

The response includes all topics that have been configured, including the default "main" topic if

it exists.

Each topic contains a list of requests that are automatically published at the specified intervals.

76

API| Documentation - SvanLINK v1.1.7

If no topics are configured, the response will be an empty object {} .

Use this request to discover available topics before subscribing to them or before deleting them
with deleteMgttTopic .

77

API| Documentation - SvanLINK v1.1.7

subscribeChannel
Description:

The subscribechannel API allows a WebSocket client to subscribe to a specific channel for
receiving real-time data. This request can only be sent via WebSocket connection and enables
the client to receive periodic updates from the specified channel.

Note: This request is WebSocket-only and cannot be sent via HTTP/TCP connections.

Request Format:
Request Body:

{
"Request": "subscribeChannel",
"Params": {
"channel": "main"
¥
¥

Request : The type of request, which is "subscribeChannel" in this case.

params : An object containing the parameters for the request.
channel (required): The name of the channel to subscribe to. If the specified channel doesn't
exist, the client will be automatically subscribed to the "main" channel.

Success Response:

If the subscription is successful, the response will indicate that the client has been subscribed to

the specified channel.

Response Format:

{
"Request": "subscribeChannel",
"Status": "ok",
"Response": {
"message": "Subscribed to channel successfully"
}
}

Request : Reflects back the original request type ("subscribeChannel").

status : The status of the request ("ok" for successful requests).

78

API| Documentation - SvanLINK v1.1.7

Response : An object containing the response data.
message : A message indicating that the subscription was successful.

Error Responses:
No Channel Specified:

{

"Request": "subscribeChannel",

"Status": "error",

"StatusMessage": "The "channel" parameter is missing"
I

Channel Doesn't Exist:

{
"Request": "subscribeChannel",
"Status": "error",
"StatusMessage": "The channel doesn't exist. Subscribing to the 'main' channel."
b
Notes:

This request can only be sent via WebSocket connection (port seo1 by default).

Authentication is required before subscribing to channels. Send a login request or provide a
valid token first.

If the specified channel doesn't exist, the client will be automatically subscribed to the "main"
channel.

Subscribing to a new channel will automatically unsubscribe the client from all other channels.

Once subscribed, the client will receive periodic updates according to the channel's

configuration.

Available channels can be retrieved using the getChannellList request.

79

API Documentation - SvanLINK v1.1.7
getChannellList

Description:

The getchannelList API retrieves a list of all available WebSocket channels and their
configurations. This request can only be sent via WebSocket connection and returns information
about all configured channels, including their associated requests and intervals.

Note: This request is WebSocket-only and cannot be sent via HTTP/TCP connections.

Request Format:
Request Body:

{
"Request": "getChannellList"
I

Request : The type of request, which is "getChannellList" in this case.

Success Response:

The response contains all configured WebSocket channels and their associated request
configurations.

80

API| Documentation - SvanLINK v1.1.7

Response Format:

{
"Request": '"getChannellList",
"Status": "ok",
"Response'": [
{
"Channel": "main",
"Requests": [
{
"Request": '"getResults",
"Interval": 1000
I
{
"Request": '"getSpectrumResults",
"Interval": 5000
}
1
}I
{
"Channel": "deviceStatus",
"Requests": [
{
"Request": "getStatus",
"Interval": 15000
}
1
¥
1
}

Response Fields:

Request : Reflects back the original request type ("getChannellList").
status : The status of the request ("ok" for successful requests).

Response : An object containing all configured channels.
[channel_name] : Each channel is represented by its name as a key.
Requests : An array of request objects configured for this channel.
Request : The type of request (e.g., "getResults" , "getSpectrumResults™).

Interval : The interval in milliseconds (ms) at which the request is sent.

Notes:

This request can only be sent via WebSocket connection (port seo1 by default).
Authentication is required before retrieving the channel list. Send a login request or provide a

valid token first.

81

API| Documentation - SvanLINK v1.1.7

The response includes all channels that have been configured, including the default "main"
channel.

Each channel contains a list of requests that are automatically sent at the specified intervals.
If no channels are configured, the response will be an empty object {} .

Use this request to discover available channels before subscribing to them with
subscribeChannel.

This configuration creates a new channel or updates an existing one with the specified requests
and intervals.

82

API| Documentation - SvanLINK v1.1.7

deleteChannel
Description:

The deletechannel API allows a WebSocket client to delete a specific channel and its
associated configuration. This request can only be sent via WebSocket connection and
permanently removes the channel from the system, including all its configured requests and
intervals.

Note: This request is WebSocket-only and cannot be sent via HTTP/TCP connections.

Request Format:
Request Body:

{
"Request": '"deleteChannel",
"Params": {
""channel": "main"
}
}

Request : The type of request, which is "deletechannel" in this case.

params : An object containing the parameters for the request.
channel (required): The name of the channel to delete.

Success Response:

If the channel is successfully deleted, the response will indicate that the channel has been
removed from the system.

Response Format:

{

"Request": '"deleteChannel",

"Status": "ok",

"StatusMessage": "The channel has been deleted successfully"
}

83

API| Documentation - SvanLINK v1.1.7

Error Responses:
No Channel Specified:

{

"Request": '"deleteChannel",

"Status": "error",

"StatusMessage": "The "channel" parameter is missing"
}

Channel Doesn't Exist:

{
"Request": "deleteChannel",
"Status": "error",
"StatusMessage": "Error, the channel doesn't exist!"
¥
Notes:

This request can only be sent via WebSocket connection (port seo1 by default).

Authentication is required before deleting channels. Send a login request or provide a valid
token first.

Deleting a channel will:
Remove the channel from the WebSocket configuration

Stop all periodic requests associated with that channel
Disconnect all clients subscribed to that channel
Save the updated configuration to persistent storage

The deletion is permanent and cannot be undone. The channel configuration will need to be
recreated if needed.

Use getChannellList to see available channels before attempting to delete one.

Clients that were subscribed to the deleted channel will need to subscribe to a different channel
to continue receiving updates.

84

